Multiple polyamine transport systems on the vacuolar membrane in yeast.

نویسندگان

  • H Tomitori
  • K Kashiwagi
  • T Asakawa
  • Y Kakinuma
  • A J Michael
  • K Igarashi
چکیده

We recently identified a gene (TPO1, YLL028w) that encodes a polyamine transport protein on the vacuolar membrane in yeast [Tomitori, Kashiwagi, Sakata, Kakinuma and Igarashi (1999) J. Biol. Chem. 274, 3265-3267]. Because the existence of one or more other genes for a polyamine transport protein on the vacuolar membrane was expected, we searched sequence databases for homologues of the protein encoded by TPO1. Membrane proteins encoded by the open reading frames YGR138c (TPO2), YPR156c (TPO3) and YOR273c (TPO4) were postulated to be polyamine transporters and, indeed, were subsequently shown to be polyamine transport proteins on the vacuolar membrane. Cells overexpressing these genes were resistant to polyamine toxicity and showed an increase in polyamine uptake activity and polyamine content in vacuoles. Furthermore, cells in which these genes were disrupted showed an increased sensitivity to polyamine toxicity and a decrease in polyamine uptake activity and polyamine content in vacuoles. Resistance to polyamine toxicity in cells overexpressing the genes was overcome by bafilomycin A(1), an inhibitor of the vacuolar H(+)-ATPase. Among the four polyamine transporters, those encoded by TPO2 and TPO3 were specific for spermine, whereas those encoded by TPO1 and TPO4 recognized spermidine and spermine. These results suggest that polyamine content in the cytoplasm of yeast is elaborately regulated by several polyamine transport systems in vacuoles. Furthermore, it was shown that Glu-207, Glu-324 (or Glu-323) and Glu-574 of TPO1 protein were important for the transport activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamine transport in bacteria and yeast.

The polyamine content of cells is regulated by biosynthesis, degradation and transport. In Escherichia coli, the genes for three different polyamine transport systems have been cloned and characterized. Two uptake systems (putrescine-specific and spermidine-preferential) were ABC transporters, each consisting of a periplasmic substrate-binding protein, two transmembrane proteins and a membrane-...

متن کامل

Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast.

Lysosomal/vacuolar protein targeting is dependent on compartment acidification. In yeast, sorting of soluble vacuolar proteins such as carboxypeptidase Y is sensitive to acute changes in vacuolar pH. In contrast, the vacuolar membrane protein alkaline phosphatase is missorted only under conditions of chronic deacidification. We have undertaken a temporal analysis to define further the relations...

متن کامل

The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network

Many intracellular vesicle transport pathways involve GTP hydrolysis by the ADP-ribosylation factor (ARF) type of monomeric G proteins, under the control of ArfGAP proteins. Here we show that the structurally related yeast proteins Gcs1 and Age2 form an essential ArfGAP pair that provides overlapping function for TGN transport. Mutant cells lacking the Age2 and Gcs1 proteins cease proliferation...

متن کامل

ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins.

The transport systems involved in the export of cellular reduced glutathione (GSH) have not been identified, although recent studies implicate a role for some of the multidrug resistance associated proteins (MRP), including MRP1 and MRP2. The present study examined the hypothesis that the yeast orthologue of MRP, Ycf1p, mediates ATP-dependent GSH transport. [3H]GSH transport was measured in vac...

متن کامل

Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport.

The mechanism of transmembrane polyamine internalization in mammalian cells remains unknown. A novel fluorescent spermidine conjugate [Spd-C(2)-BODIPY; N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-N'-(S -[spermidine-(N(4)-ethyl)]thioacetyl)ethylenediamine] was synthesized from N(4)-(mercaptoethyl)spermidine by a simple, one-step coupling procedure. In Chinese-hamster ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 353 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001